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Abstract 

A linear transformation is defined as a distortion of the 
unit lengths along three Cartesian axes and of their 
angles, preserving the same covariant coordinates of 
the corresponding points. The mathematical relation- 
ship between the line profiles of two mutually trans- 
formed crystals is proposed. It makes it possible, for 
example, to get the line profiles for ellipsoids, parallele- 
pipeds, distorted tetrahedra and octahedra from the 
exact results reported by Langford & Wilson [J. Appl. 
Cryst. (1978), 11, 102-113] for spheres, cubes, regular 
tetrahedra and octahedra. 

The line profile for a collection of identical crystallites 
of any shape is proportional to 

1 
Ihkl(S ) = ~ y Vhkl(t ) cos(2nst) dt, (1) 

where U is the volume of one unit cell, Vhkt(t ) is the 
volume common to a crystallite and its 'ghost' shifted a 
distance t in the direction perpendicular to the reflecting 
planes hkl, and s is the amount by which the radius 
vector in reciprocal space, S = (2 sin 0)/2, exceeds its 
value for the reciprocal-lattice point hkl (see, for 
example, Wilson, 1949, p. 41, equation 21). This line 
profile can be evaluated, in principle, for crystallites of 
arbitrary shape; the problem reduces to the purely 
geometrical one of determining V(t) and then finding its 
cosine Fourier transform. In practice most cal- 
culations so far have been confined to regular shapes 
with cubic or higher symmetry (see Langford & 
Wilson, 1978, for a survey), though some attention has 
been given to parallelepipeds (Allegra & Ronca, 1978, 
1979) and hexagonal and circular cylinders (Langford, 
Lou~r & Wilson, 1980; Langford & Lou~r, 1982; 
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Lou~r, Vargas & Langford, 1981). However, as was 
pointed out by Patterson (1939), results for a regular 
symmetrical shape may be altered to apply to any 
non-regular unsymmetrical shapes that can be derived 
from the regular one by linear transformations of 
coordinates. Thus results for a cube will lead to those 
for any parallelepiped, those for a sphere to those for 
any ellipsoid, and those for a regular tetrahedron or 
octahedron to those for a non-regular tetrahedron or 
octahedron. After a linear transformation the new 
values, Vl(t~), will be proportional to the old ones, V(t), 
the proportionality factor being independent of t, and if 
the crystallite is 'stretched' in the direction of t in the 
ratio I:R, then (1) shows that the line profile as a 
function of s is simply compressed in the ratio of R: I .  
This conclusion follows even more clearly from an 
alternative expression for the line profile (Wilson, 1949, 
p. 35, equation 5), in which the only effect of a linear 
transformation is to increase all the values of t in the 
ratio 1 :R. The alternative expression, however, is less 
convenient for the actual calculation of I(s). For the 
above regular shapes, except the circular cylinder, V(t) 
is a cubic in t, and remains so under any linear 
transformation of coordinates. 

We have, therefore, a cubic crystal with unit cell 

a = a | ,  b = a j ,  c = a k  (2) 

and volume function Vhkl(t), and a non-cubic crystal 
derived from it by a linear transformation and having 
cell parameters 

al, bl, Cl; a, fl, ), (3) 

and volume function Vh~k~ll(tl) proportional to 
Vhkt(Rt ). TO make practical use of the results of 
Langford & Wilson (1978), therefore, it is necessary to 
determine (i) the pseudo-indices hkl (not necessarily 
integral) in the cubic crystal corresponding to the 
indices h~k~l I of the reflection of interest from the 
non-cubic crystal; and (ii)the value of R. 

The directions of the reciprocal vectors in the 
transformed crystal and in the original one (i.e. S1 and 
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S respectively) must be related by the same linear 
transformation holding in direct space. On the other 
hand, the line profile [see (1)] only depends on the 
reciprocal direction, which means that the actual 
lengths I $11 and I S l are unimportant. This leaves us the 
freedom to select S so that it is exactly related to S~ by 
the direct-space transformation (Fig. 1). We are thus 
able to derive S(hkl)  for a given Sl (h lk l l l ) ,  and the 
problem is solved since R = I S~I / ISI ,  and the 
pseudo-indices hkl  are readily obtained. We shall 
express S 1 and S in terms of the components along 
both the direct (4a~, 4bl) and the reciprocal (4a 2, 4b2) 
axes, which are coincident for the cubic unit cell: 

Sl (h  I k 111) --  x *  i 1 + y*  Jl + z* k I (4a~) 

Sl (h  I k I / 1) : h 1 al* + k I b* + l 1 c~ (4a2) 

S(hkl )  = x* l + y* j + z* k (4bl) 

S(hkl )  -- a-l(hl  + kj  + lk). (4b2) 

In the above, i 1, j~, k 1 (|,j,k) are unit vectors along 
the unit-cell vectors a 1, b I, e~ (ai,aj, ak). Further, let p~, 
Pb, P~ be the characteristic dimensions of the real 
crystallite along a 1, b 1, cl, while r is the corresponding 
common dimension in the regular-shaped crystallite. 
The required transformation will be given in terms of 
the dimensions Pa, Pb, Pc and r, as well as of the lattice 
parameters of the real crystal. Since (aa = l aal etc.) 

a l . a *  = a l ( l l . a * )  = 1; 
(5) 

Jl. a* = k I . a* = O, 

we may write the following identities (from 4a~ and 
4bl) 

a-L S l ( h l k l l l ) . a * =  al x * ( i l . a * ) =  x-~ (6a) 
Pa Pa Pa 

a x*  
- S ( h k l ) .  a* = - - .  (6b)  

Since S and S~ transform according to the deformation 
tensor of the crystallite, the two above expressions must 
be identical. Remembering that a* = a -1, we have 

h 
x* = ha* = - ,  (7) 

a 

so that, equating (6a) to (6b), we get 

~7 
h = - - a x * .  (8) 

Pa 

On the other hand, x~ is equal to al(S 1 . a*) (cf. 6a) and 
the scalar product is conveniently evaluated through 
(4a2) :  

x* = a I Sl.a* = al a* qh, (9) 

where 

qh = hi a* + k 1 b* cos y* + l 1 c* cos fl* 

qk = hi a* cos y* + k I b~ + l I c* cos a* 

qt = hi a* cos fl* + k 1 b* cos a* + l I c* 

(9') 

are quantities already defined in previous papers and 
denoted as ql, q2, q3 (see, e.g. Allegra, Bassi & Meille, 
1978). Substitution into (8) gives 

h = m aa I a* qh 
Pa 

k = - -  ab I b* qk (10) 
Pb 

l = - -  ac I c* qt 
Pc 

1 
I S(hkl) l  -- - (h 2 + k 2 + 12)1/2 (10') 

a 

and the ratio R is given by 

R = IS l (hk l ) l / IS (hk l ) l  (11) 

= [ ( h l a * )  2 + (k l  b~') 2 + (ll c~') 2 

+ 2(h 1 a*)(k  1 b*) cos y* 

+ 2(h 1 a*)(l I c*) cos fl* 

+ 2(k I b'~)(l 1 c'~) cos a*] 1/2 

× { z[(ala*qh/Pa) 2 

+ (bib* qk/pb) 2 + (C 1 C* qt/pc)2]l/2} -1. 

As a first example, let us specialize the above result 
to the case of parallelepiped crystals, already con- 
sidered (Allegra & Ronca, 1979, see Fig. 1). It is easy 
to show, by comparing equation (3) of Allegra & 
Ronca (1979) with (10) above, that the following 
identities apply 

Ihl = zalft; Ikl = ralv; Ill = ra /~ ,  (12) 

y~,, 

Fig. 1. Relationship between the ideal crystal with cubic symmetry 
(right) and the real, parallelepiped-shaped crystal obtained after a 
linear transformation (left). The reciprocal vectors S and Si are 
also linearly transformed (see text). 



282 LINE PROFILES FOR A COLLECTION OF IDENTICAL CRYSTALS 

with fi = Nh/(a~lqhl), {) = N,/(b~lqkl), (v = Nt/(c*/Iqtl) 
( N  h, N, ,  N z are the numbers of unit cells along the 
crystal edges parallel to 41, b,, e~), so that the result 
given by one of us for the cube (see, for example, 
Wilson, 1949, p. 43, equation 26) is readily converted 
into equation (1') of Allegra & Ronca (1979) apart 
from a factor equal to the unit-cell volume. 

Lastly, we shall consider the case of the ellip- 
soid-shaped crystaUite. The line profile of a sphere with 
radius ris given by (Langford & Wilson, 1978) 

Ihkl($)= N { I / / - 2 -  I//-3 sin 2~, + ½gt-4(1 - c o s  2~)},(13) 

where 

q/= 27rrs, (13') 

and N = Vhk(O)/U is the number of unit cells in the 
crystal. From the above it readily follows that the 
diffracted intensity is given by (13) except for the 

replacement of N with N 1 and of ~ with 2rd~ zs, R being 
given by (11). Pa, Pb, Pc are here the intercepts of the 
ellipsoid along three Cartesian axes coinciding with the 
axes of the unit cell. 
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Abstract 

A partially analytic technique for the calculation of 
electron transmission functions used in multislice 
calculations is developed. This development utilizes the 
fact that atomic scattering amplitudes are generally 
available as fitting parameters to four Gaussians. The 
result is especially applicable to calculations with a 
large or infinite repeat distance in the incident-beam 
direction and initial test calculations give a time saving 
of a factor of four. Sample results are given for the 
calculation of images from an inclined stacking fault in 
gold. 

Introduction 

The multislice method (Cowley & Moodie, 1957; 
Goodman & Moodie, 1974) for the calculation of 
dynamical electron scattering has been discussed and 
used extensively (e.g. Bursill & Wilson, 1977; Lynch, 
1971). 
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The object is considered as a series of thin slices with 
the electron wave function at the exit surface of the nth 
slice being given by 

gtn(x ) =[gtn_ l(x ) , pn(x)] qn(x), (1) 

where qn(X) is the transmission function of the nth slice 
and Pn(X) is the propagation function from the 
(n -- 1)th to nth slice a n d .  represents the convolution 
integral. In a typical calculation the distance between 
slices is chosen to be constant and hence all p,(x)'s are 
the same and need only be evaluated once and then 
stored in computer memory. 

The transmission function is determined by 

qn(X,y: zn,Az ) = exp{--io~p(x,y: zn,Az)} (2) 

(Cowley & Moodie, 1957), where tr is the relativistic 
interaction constant for electrons and ~o(x,y: z , , dz )  is 
the projected potential on the x,y plane due to the 
crystal potential over the thickness Az from z = z n to 
z n + Az. This may be evaluated from the atomic 
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